cuadro magico
Las matemáticas recreativas son una buena manera de aprender disfrutando. Con los cuadrados mágicos podrás pasarlo bien mientras le das al coco.

Hablaremos en este artículo de los cuadrados o cuadros mágicos, tal como se llaman en latinoamérica.

Considero que resolver problemas de matemáticas es una actividad primordial en el aprendizaje. Y este ejemplo que te traigo hoy es una muestra de ello. Este tipo de juegos siempre triunfan en clase.

 ¿Qué es un cuadrado mágico?

Es una tabla donde se colocan números enteros en sus casillas. Cumple las siguientes condiciones:

  • La suma de los números de cualquier línea (horizontal, vertical o diagonal) será siempre la misma (constante mágica)
  • Los números de un cuadrado mágico deben ser todos diferentes.
  • Cualquier cuadrado mágico se puede construir por números que formen una progresión aritmética.

Al  número de casillas de una línea se le denomina orden o módulo del cuadrado. Puedes comprobar que no existen cuadrados mágicos de orden 2.

Un poco de historia. ¿Cuál es el origen de los cuadros mágicos?

Cuenta una leyenda china que alrededor del año 2100 a. C. el emperador Yu vió emerger del río a una tortuga. En su caparazón tenía unas marcas, que puedes ver simbolizadas en el primer dibujo. Después tienes la representación numérica. Es de orden 3 y su constante mágica es el número 15.

cuadros mágicos

¡ Se trata del primer cuadrado mágico conocido! Se le atribuyeron propiedades mágicas y religiosas. Posiblemente fueron los chinos los primeros en descubrir las  peculiaridades matemáticas de estos cuadrados.

 En Occidente los cuadrados mágicos surgen por primera vez  en el año 130 d.C. Se han encontrado en documentos del astrónomo griego Teón de Esmirna.

Muchos matemáticos y astrónomos de la Edad Media creían en la importancia de estos arreglos numéricos.  Atribuían a ciertos números propiedades misteriosas o  cabalísticas. Los  cuadrados mágicos se utilizaron para predecir el futuro y curar enfermedades.

La superstición era muy común entonces y creían que los cuadrados mágicos eran amuletos y servían de protección. Un cuadrado mágico de plata, colgando del cuello, era un amuleto que evitaba el contagio de la peste negra. En el Renacimiento, se estudiaron desde el punto de vista matemático y varios científicos y artistas los usaron como ilustraciones para sus obras, entre ellos Durero.

Alberto Durero (1471-1528) En su grabado Melancolía, este gran matemático incluyó uno de los cuadrados mágicos más conocidos y fascinantes. Es de orden 4 y su constante mágica es 34. Aquí lo tienes:

cuadro melancolía

 

La característica más visible es que en su parte inferior aparece 1.514, el año en que fue grabado. Todas sus columnas, filas y diagonales; sus cuatro esquinas, el cuadrado central, y sus cuatro cuadrantes suman 34.Durante siglos se ha pensado que el cuadrado mágico de Durero es un “arquetipo lleno de significado y misticismo”.

El matemático Cornelio Agripa (1486 – 1535) construyó cuadrados mágicos con los módulos 3, 4, 5, 6, 7, 8 y 9, que representaban simbólicamente los siete planetas: Saturno, Júpiter, Marte, Sol, Venus, Mercurio y la Luna. Para Cornelio el cuadrado con una casilla con el número 1, simbolizaba la unidad y la eternidad de Dios. El no poder construir un cuadrado con 4 casillas, lo atribuía a la imperfección de los cuatro elementos: aire, tierra, agua y fuego. Agripa, fue acusado de ejercer hechicería y le condenaron a un año de prisión.

 

Otros personajes célebres que jugaron con los cuadrados mágicos

Benjamín Franklin (1706-1790) dedicó mucho tiempo a estudiar y crear cuadrados mágicos.

Genios matemáticos como Fermat , Euler, Pascal y  Leibnitz, hicieron admirables estudios sobre cuadrados mágicos.

Hemos avanzado mucho desde aquellos simples cuadrados mágicos 3 x 3 que recibieron la veneración de distintas civilizaciones de todas las épocas y continentes, desde los mayas hasta los hausa africanos. Los matemáticos actuales estudian estos objetos mágicos en dimensiones superiores, por ejemplo bajo la forma de hipercubos de cuatro dimensiones que suman un mismo resultado en todas las direcciones posibles.

Ya has podido darte cuenta que hablar de cuadrados mágicos es hacerlo de una de las maravillas numérico-matemáticas más interesantes que pueda haber, remontándose su historia a más de 4 mil años, habiéndose utilizado desde un punto de vista mágico-místico en culturas como la china, la egipcia (predecían con ellos el futuro), la india, la griega, la árabe, etc. Además, los cuadrados mágicos también han servido para la resolución de importantes teoremas matemáticos, aparte de inspirar trabajos arquitectónicos y diseños industriales.

¿Cómo se hacen los cuadros mágicos?

Hay varias maneras sobre cómo hacer cuadros magicos, pero quiero mostrarte estrategias sencillas para crear cuadrados mágicos.

 

Cuadro mágico de orden impar

El ejemplo más sencillo es un cuadrado de orden 3, el más pequeño posible. Usaremos los números del 1 al 9. Empieza dibujando el esqueleto de tu cuadrado. Después añade casillas en todos los laterales, hasta formar un rombo. De esta forma:

como hacer cuadros magicos

 

Ahora, empieza en el extremo superior con el 1 y coloca todas las cifras siguiendo las diagonales alternas formadas en el rombo. Observa que quedan casillas en blanco.

cuadro magico
Sólo te falta completar el cuadrado mágico. ¿De qué forma?. Tienes que “colocar” los números que están en las casillas exteriores del cuadrado, al lugar que les corresponde. Dentro!

¿Cómo? Utilizando simetría!

Primero usamos una simetría horizontal. Las celdas externas de la parte superior pasan a completar la parte inferior, como si lo doblásemos. Y las de la parte inferior pasan a la parte superior. De la misma forma usamos después una simetría vertical.

Con una imagen se entiende mejor. El cuadrado quedaría así. ¿Te suena?


cuadrado magico

 

¿Te atreves ahora a hacer un cuadrado mágico de orden 3 usando sólo números impares?

Aquí tienes otro ejemplo; un cuadrado de orden 5 y constante 65. No es difícil. Seguro que tú también puedes hacerlo con los números que quieras y sorprender a tus amigos. Recuerda las condiciones para hacer magia!

como hacer un cuadrado magico

 

ejemplos de cuadrados magicos

Cuadro mágico de orden par

Creo que ya estás en condiciones de hacer un cuadrangular de orden 4. Sitúa el número 1 (o la primera cifra de una serie) en el extremo superior izquierda. Ahora desplazándote cómo si escribieras, anota solamente las cifras correspondientes a las casillas que forman las dos diagonales principales.

como hacer los cuadros magicos

 

Por último, sitúate en la última celda en blanco (casilla 15). Aquí pones el número 2 (o la 2ª cifra de la serie). Ahora te desplazas de derecha a izquierda y hacia arriba para ir completando los números que faltan por orden.

Una imagen te aclarará tus posibles dudas. ¡Nuestro cuadrado ya está resuelto!

cuadro magico de 4x4

 

Si prestas atención, podrás comprobar que este cuadrado es completamente simétrico al de Durero. de hecho si aplicamos el método situando la cifra 1 en el extremo inferior derecho y lo hacemos todo a la inversa ¡¡obtendremos el cuadrado mágico de Durero!!

De la misma forma, podrás hacer un cuadrado mágico con cualquier progresión aritmética. Tienes infinitas posibilidades …

Cuadrados mágicos diabólicos

Son aquellos que continúan siendo mágicos cuando transportamos una columna o una línea de un lado a otro. Este además también se puede descomponer en varios cuadrados mágicos (es hipermágico)

como se hace un cuadrado magico

Cuadrados mágicos fascinantes

Finalmente, te muestro 3 cuadrados mágicos interesantes y curiosos. Pequeñas obras de arte creadas por Blai Figueras.

Cuadrado mágico «Satánico»

Es de orden 6. Está compuesto exclusivamente por múltiplos de 6. Su constante mágica es 666. No lo mires demasiado tiempo, por si acaso.Menos mal que no estamos en la Edad Media …

cuadro 6x6

Cuadrado mágico «en un tablero de ajedrez»

En este caso es de orden 8, formado por los números del 1 al 64.

  • Puedes comprobar que la suma de filas,columnas y diagonales = 260
  • Al sumar las 4 esquinas y los 4 números centrales= 1040
  • Suma casillas blancas=suma casillas negras= 1040

Por si no lo sabías, ¡me encanta el ajedrez! Encontrarás algún artículo sobre este juego infinto en el blog.

ejemplo 8x8

Cuadrado mágico doble

Existen cuadrados mágicos que pueden tener la notable propiedad de contener otro cuadrado mágico en su interior. Aquí tienes uno de orden 5, que contiene otro de orden 3 en su interior.

La constante del cuadrado mayor es igual a 75. El cuadrado verde más pequeño juega al 45.

como hacer cuadros magicos

Como has podido ver las posibilidades que ofrecen los cuadrados mágicos son enormes. Espero que te haya resultado interesante.

Cuéntame, ¿Has aprendido a construirlos? 

En el siguiente enlace, puedes ver otro tipo de juegos matemáticos espero que te diviertas.

Te leo en los comentarios …

¿Te ha gustado? Comparte matemáticas. GRACIAS
Tweet about this on Twitter
Twitter
Share on Facebook
Facebook
Pin on Pinterest
Pinterest
Share on Reddit
Reddit
Email this to someone
email

¿Te imaginas que tu hijo no tuviera problemas con las matemáticas?

Tengo muchos años de experiencia y puedo resolverle cualquier duda. Podrá entender todas las matemáticas de secundaria. 

73 comentarios en “Cuadros mágicos: Cómo hacer cuadrados mágicos fácilmente”

  1. Mauricio Omaña

    Cordial saludo. Intente hacer un cuadrado mágico 6×6 siguiendo el ejemplo suyo del 4×4 pero no me funcionó, en cambio el de los cuadrados impares si me funciono con el 5×5. Gracias.

    1. Justo Fernández

      Gracias por comentar. Me alegro que hayas jugado con las matemáticas y hayas descubierto más patrones.
      Un abrazo!

    1. Justo Fernández

      Buena pregunta David. Debería investigar un poco para responderte. No estoy seguro, pero creo que no se puede.
      Saludos!

    1. Mariros López

      Hola, necesito un ejemplo sobre como resolver este cuadro:
      Es un cuadro de 3 casillas, de izquierda a derecha en la primera esta: a+b a-(b+c) a+c
      2da. a-(b-c) a a+(b-c)
      3ra. a-c a+b+c a-b

      Gracias.

    2. Joaquín nava

      Soy docente, he trabajado los cuadrados mágicos y considero que el verdaderamente magico es de 4×4 . Obtienes el mismo resultado en 32 combinaciones de numeros aqui es tlax mexico

      1. Justo Fernández

        Muchas gracias por tu aportación Joaquín.
        El mundo de los cuadrados mágicos es muy amplio y divertido.
        Saludos para tierras mexicanas.

  2. Hola, me pueden ayudar con un cuadro 3×3 con los números-6,-5,1,2,3,5,7,9 Y 11 sólo las columnas y filas deben sumar lo mismo

    1. Justo Fernández

      El resultado debe ser -9. Si sigues las indicaciones del artículo llegarás a este cuadrado
      -4 1 -6
      -5 -3 -1
      0 -7 -2
      Saludos!

  3. Mireya iñiguez

    Hola me podrias ayudar con un cuadro magico q de como resultado -3/2 con estas cifras -5,1/2,-7,12/3,-6,-0.5,-3/2,6,20/4 te agradeceria mucho la ayuda

  4. Karla Nazarit

    Por favor me ayudas con un cuandro magico de 3×3
    Estos son los numeros 0,1 0,3 0,5 0,6 0,8 0,9 0,22 0,40 0,70
    Quede 1,5
    por favor lo necisito

    1. Justo Fernández

      Hola Karla. Los números que me indicas no siguen una progresión aritmética. Se puede obtener pero lleva un tiempo y ahora no lo tengo.
      Saludos!

  5. Hice en 20 minutos un cuadro mágico 4×4 que suma 88 según el 88 es cabalístico
    también hice un cuadro mágico de vocales y encontré muchos nombres abreviadas como IOA jusús alfa y omega.

    1. Justo Fernández

      No es fácil solo con estos datos Cesar. ¿Alguna pista más? ¿Te dicen qué numeros intervienen?
      Saludos.

  6. Me ayudaría con esto por favor:
    Formar un cuadrado mágico de 4×4, colocando en cada casilla del cuadrado un número de 4 cifras que esté formado sólo por cincos y/o sietes.

    1. Justo Fernández

      Hola Jhon,
      No parece sencillo. No encuentro la solución. A ver si algún lector puede ayudarnos…

      Saludos

    2. Por favor me ayudan con un cuadro 3x 3 con los números del 1 al 4 positivos y negativos (0,1-1,2,-2,3,-3,4,-4)

      1. Justo Fernández

        Elizabeth, debes seguirlos mismos pasos que te indica el artículo. Aquí no puedo hacerte el dibujo.
        Es un cuadrado mágico muy chulo, poque no vale nada 😉 En cualquier línea, su suma es cero. Saludos!
        -1 4 -3
        -2 0 2
        3 -4 1

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Ir arriba